

Synthetic Instruments an overview

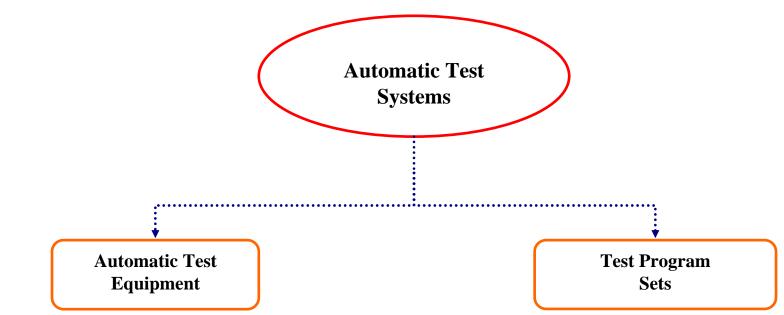
Musab Siddiq and Niclas Björsell

Center for RF Measurement Technology

CONTENTS

- Introduction
- IEEE Standards
- Defense Industry
- Synthetic & Virtual Instrument
- Signal Conditioning
- Real-World Examples
- Questions

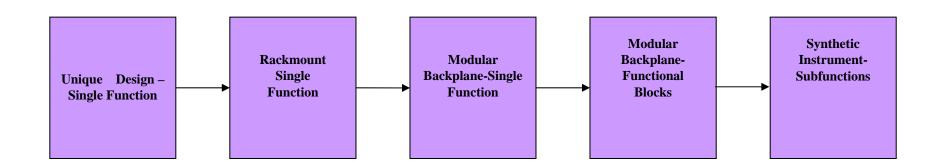
Introduction


Synthetic Measurement System

A synthetic measurement system (SMS) is a system that uses synthetic instruments implemented on a common, general purpose, physical hardware platform to perform a set of specific measurements using numeric processing techniques.

Synthetic Instruments

A synthetic instrument is a functional mode or personality component of an SMS that performs specific synthesis or analysis function using specific software running on generic, non-specific physical hardware.


- GPIB
- VMEbus
- PClbus

Can be configured to Test

- Black Boxes (such as LRU's or WRA)
- Circuit Cards (such as SRU or SRA)

Automatic Test Systems

- Cost and product availability
- Development expenses
- Long term support

Design Requirements

Requirement	Goal
Size	Minimum Size
Power Requirements	Portable, Battery operation
Modularity	Low level functions
Interface Bandwidth	Utilize Existing Bus
Processing Power	Leverage PC Architecture
Reliability	Increased MTBF
Upgrade Capability	Block Level
Cost	Reduced

IEEE Standards

Formal Standards

- De Facto Standards
- Evolving Standards

Standards

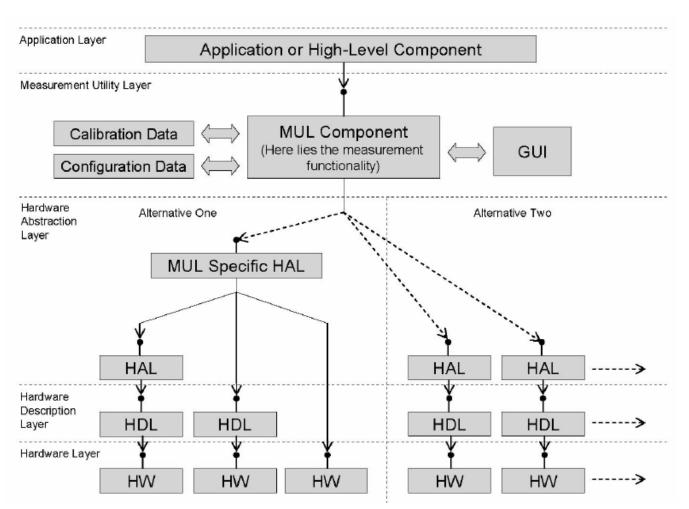
Formal	De Facto	Evolving
IEEE-488	PXI	LXI
VXI (IEE-1155)	IVI	IEEE-P1552: Structured Architecture for Test Systems
IEEE-1641	TYX PAWS	
IEEE-716 ATLAS		IEEE-P1505
IEEE-1671		IEEE-P1505.1
IEEE-P1232a		IEEE-1149
IEEE-P1636.1		
IEEE-P1671.1		
IEEE-P1671.2		

Defense Industry

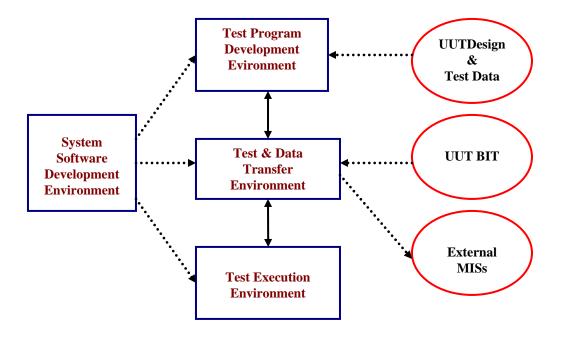
Demands of DoD market

- Reduce the total cost of ownership of the ATS
- Reduce time to develop and field new or upgraded ATSs
- Provide greater flexibility between the US and coalition partners through interoperable ATSs
- Reduce test system logistics footprint
- Reduce the test systems physical footprint

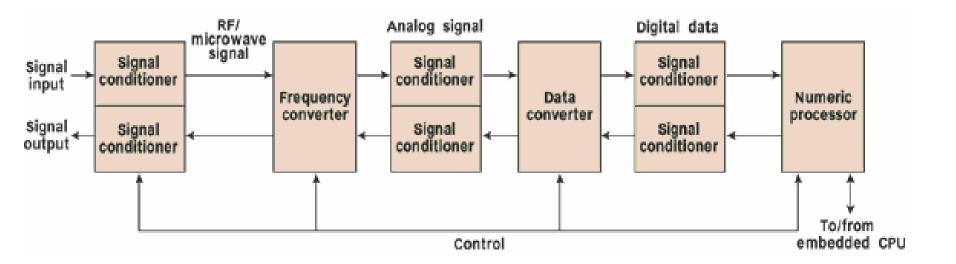
Synthetic & Virtual Instruments


Virtual Instrumentation

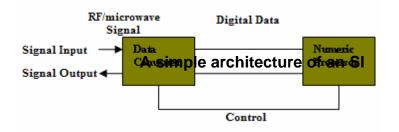
The concept of Virtual Instrumentation (VI) was developed within the Interchangeable VI foundation. It is defined as a software- defined system where software based on user requirements defines the functionality of generic measurement hardware i.e. it is a combination of hardware and software into a reusable building blocks, where the results are presented on a computer screen rather than on a display with the intention to create maximum flexibility.


A VI system may be used in a design or R&D lab as well as in production testing. Dependent on the application, the focus may shift on how the system is accessed by the user. The user could be accessing, for example, a test program or a standalone GUI. Note here, that the GUI is not in general a part of the VI system, but a user of this system.

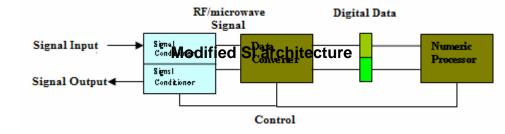
Software Structure



NxTest software architecture

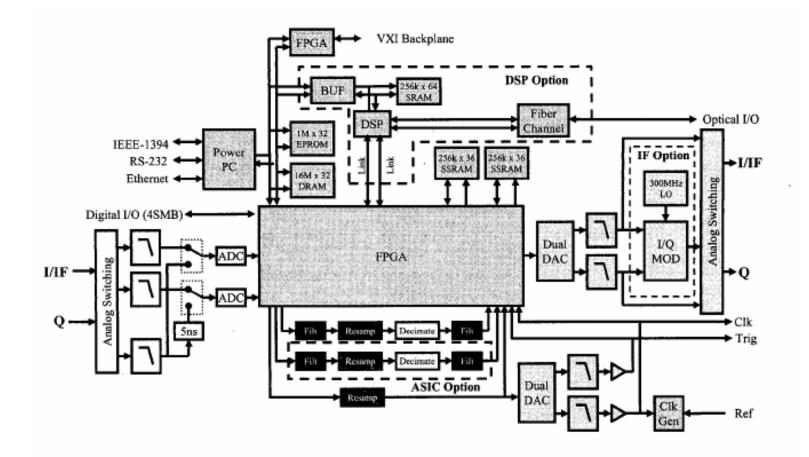

Synthetic Instrument Architecture

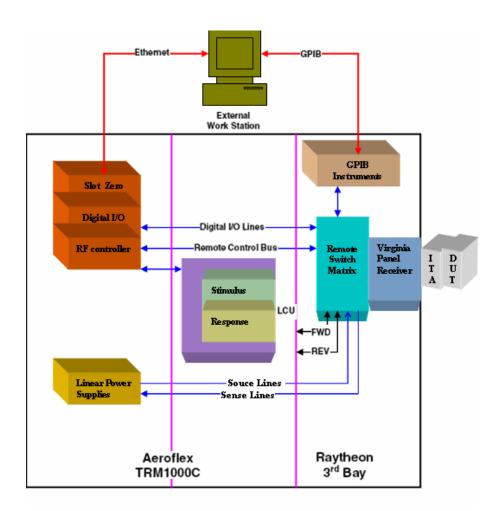
- Signal Conditioners
- Frequency Converters
- Data Converters
- Numeric Processor
- Data Processor / Controller



Simple Model

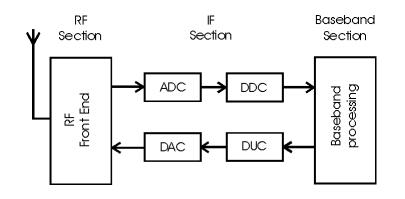
Wanted Signals	Unknown Signals
Frequency Range	Spurious Signals
Signal to Noise Ratio	Distortion Products
Modulation B/W (time varying)	Thermal (noise)
Power Range (sensitivity)	Interference (EMI)


The key issues for known and unknown signals


$$ENOB = \frac{SNR_A - 1.76dB - 10\log(f_s / 2f_a)}{6.02}$$

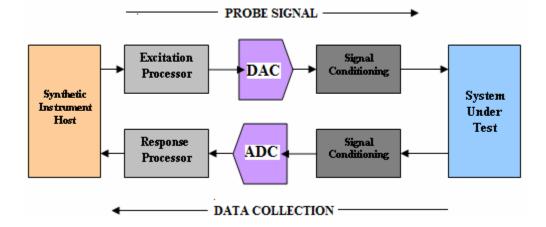
where : $SNR_A = 20\log\left(\frac{RMS \ Signal \ Level}{RMS \ noise \ level}\right)$
fs = sampling rate ; fa = analog bandwidth

Synthetic Wideband Instrument Architecture



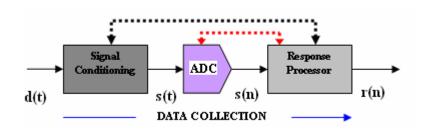
TRM 1000C

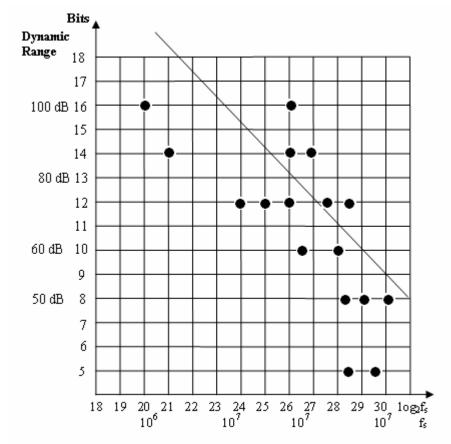
Software Defined Radios (SDR)



- DSP
- FPGA
- GPP

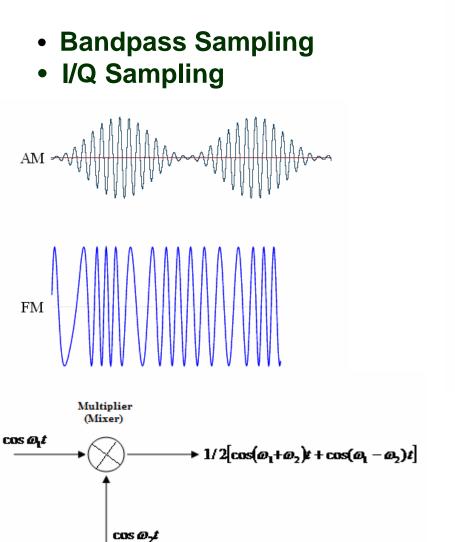
Implements the radio functionality to transmit and receive signals

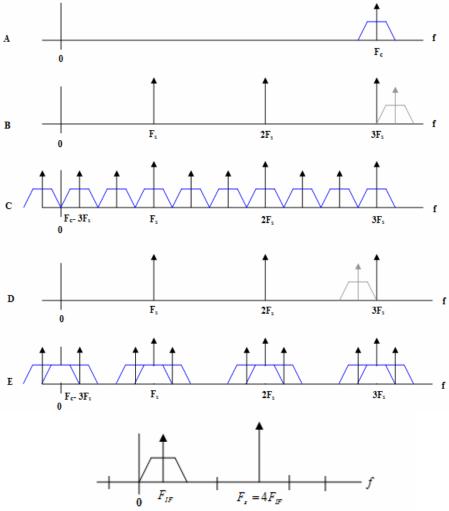

Coupled Data Collection Units


- Analog signal conditioning unit,
- ADC, and the
- Signal-processing unit.

ADC & DAC Technology

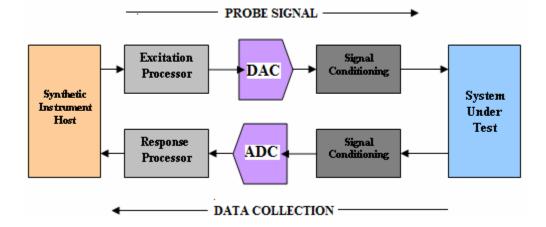
$$\log_2(2^k f_{SAMPLE}) = k$$
$$b = \log_2(k) - \log_2(f_{SAMPLE})$$


Number of Bits	Sample Rate	SNR	SFDR
8	1.5 GHz	47 dB	54 dB
12	200 MHz	65 dB	80 dB
16	1 MHz	94 dB	110 dB
20	24 kHz	112 dB	112 dB

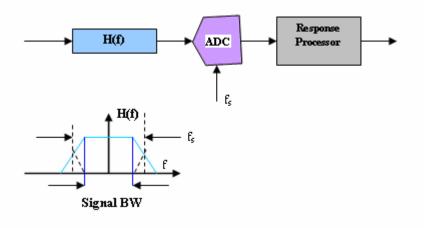


Signal Conditioning

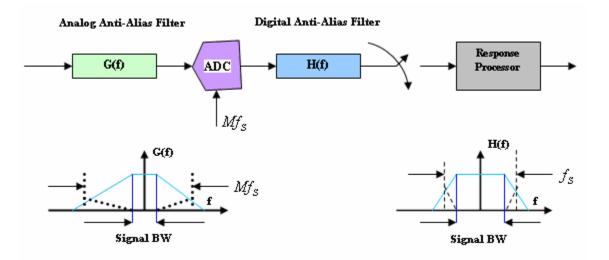
Sampling



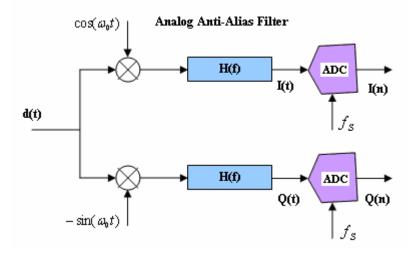
The sampling rate is Fs and is illustrated with harmonics of Fs shown as impulses out at Fs multiples: Fs, 2Fs, 3Fs


Coupled Data Collection Units

- Analog signal conditioning unit,
- ADC, and the
- Signal-processing unit.

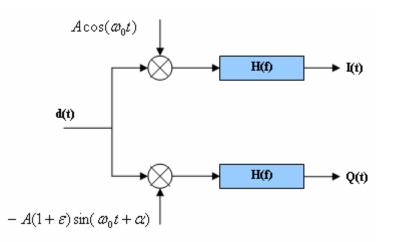

Option-1

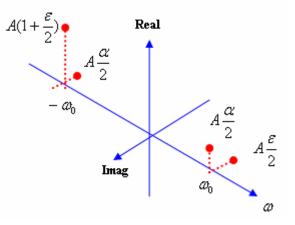
 $f_{SAMPLE} = 2sided BW + \Delta f$ $\Delta f = Transition BW of Anti-Alias Filter$


Traditional signal conditioning with analog anti-alias filter

DSP assisted signal conditioning with analog and digital anti-alias filters

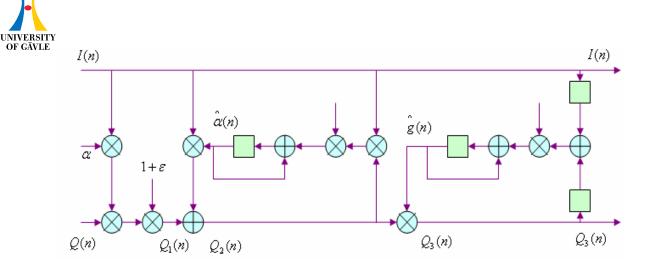
Option-2




$$g(t) = A \{ \cos(\omega_0 t) - (1 + \varepsilon) \sin(\omega_0 t + \alpha) \}$$

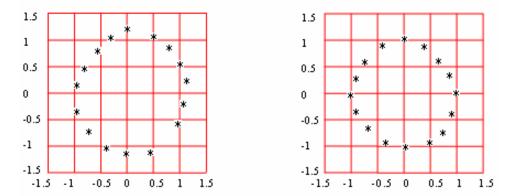
$$g(t) = \left\{ \left[\frac{A}{2} - \frac{A}{2} (1 + \varepsilon) \cos(\alpha) \right] - j \left[\frac{A}{2} (1 + \varepsilon) \sin(\alpha) \right] \right\} \exp(j\omega_0 t) + \left\{ \left[\frac{A}{2} + \frac{A}{2} (1 + \varepsilon) \cos(\alpha) \right] - j \left[\frac{A}{2} (1 + \varepsilon) \sin(\alpha) \right] \right\} \exp(-j\omega_0 t)$$

$$g(t) \cong A\left[\frac{\varepsilon}{2} - j\frac{\alpha}{2}\right] \exp(j\omega_0 t) + A\left[(1 + \frac{\varepsilon}{2}) - j\frac{\alpha}{2}\right] \exp(-j\omega_0 t)$$


Traditional signal conditioning for quadrature down conversion

Spectral Components of unbalanced complex Sinusoid

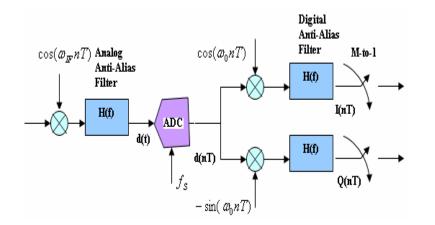
Model of quadrature down conversion with gain and phase imbalance

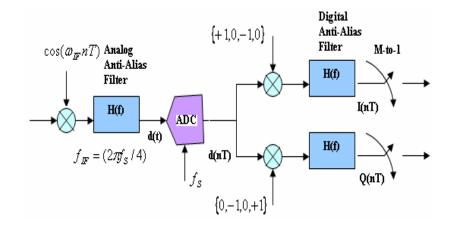

Model of gain and phase mismatch in Quadrature Down Converter with block diagrams of algorithms that perform adaptive gain and phase balancing

$$Q_{2}(n) = (1 + \varepsilon).Q_{1}(n)$$

$$Q_{3}(n) = g(n).Q_{2}(n)$$

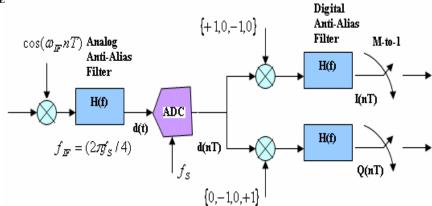
$$\hat{g}(n+1) = g(n) + \mu [|I(n)| - |Q_{3}(n)|]$$

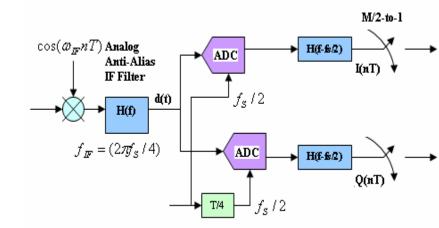

 $Q_2(n) = Q_1(n) + \alpha I(n)$ $Q_2(n) = Q_1(n) - \alpha I(n)$ $\hat{\alpha}(n+1) = \alpha(n) + \mu [I(n).Q_2(n)]$



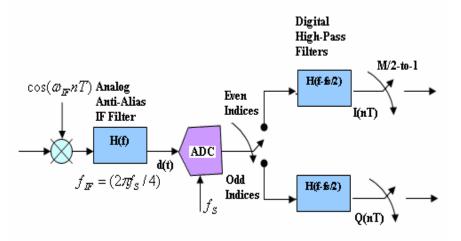
Constellation points from Quadrature Down Conversion with gain and phase mismatch before and after self compensating gain and phase balancing networks

Option-3

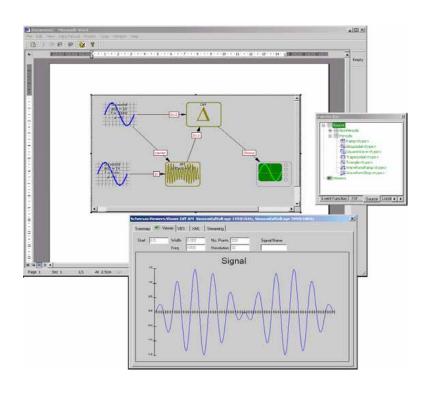




Block diagram of composite down conversion process: Sampling real IF signal followed by digital downconverter Block diagram of composite down conversion process: Sampling real signal on IF at quarter sample rate followed by trivial digital down converter with no multiplications


$$\omega_0 T n \bigg|_{\omega_0 = \frac{2\pi f_s T}{4}} = \frac{2\pi f_s T}{4}$$
$$= \frac{2\pi (1/T)T}{4} n = \frac{\pi}{2} n$$

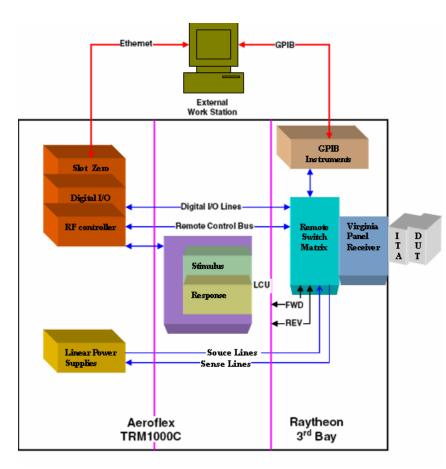
Block diagram of composite down conversion process: Sampling real signal on IF at quarter sample rate followed by trivial digital down converter with no multiplications Block diagram of composite down conversion process: Sampling real signal on IF at quarter sample rate with two half rate, Offset T/4 ADC to form complex output stream



Block diagram of composite down conversion process: Sampling real signal on IF at quarter sample rate followed by commutator down sample and alias to half sample rate

Signal and test description standard

- Modern PC
- Automated Test Program (ATP) design & Simulation
- Simulation
- ATE

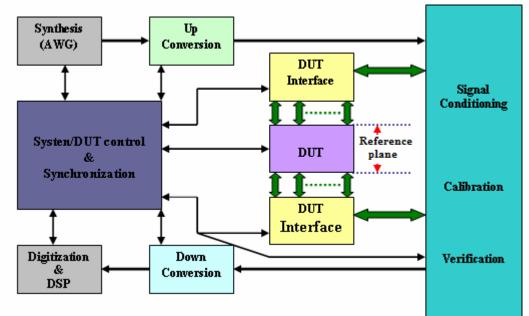

schemas:	Yiewers:Shows AM modIndex=0.1 Sum SinusoidalVoltage 0.9YV@150Hz, SinusoidalVoltag	_
ummaru 🏻 🖪	Viewer VBS XML Streaming	
aning A l		
xml v</td <td>/ersion="1.0" ?> <!---encoding="UTF-8"---></td> <td></td>	/ersion="1.0" ?> -encoding="UTF-8"-	
- crea</td <td>ited with newWave (http://www.racalinstruments.com) -></td> <td></td>	ited with newWave (http://www.racalinstruments.com) ->	
W3C</td <td>Schema generated by newWave (http://www.racalinstruments.com) -></td> <td></td>	Schema generated by newWave (http://www.racalinstruments.com) ->	
Signal	name='"' Out=''AM8 Sum12''	
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	
	xsi:noNamespaceSchemaLocation="signals.xsd">	
	SinusoidalVoltage name="Sinusoidal15" amplitude="0.9V" frequency="150H	
	SinusoidalVoltage name="Sinusoidal14" amplitude="1.1V" frequency="90H;	
	SinusoidalVoltage name="Sinusoidal13" amplitude="2V" frequency="1080H	z'
	<sum in="Sinusoidal15 Sinusoidal14" name="Sum12"></sum> <am carrier="Sinusoidal13" in="Sum12" modindex="0.1" name="AM8"></am>	
/ Giana		
<td></td> <td></td>		
< ¦ Signa ∢		•
∢ Edit		•
Edit		•
∢ Edit		•
∢ Edit		•
Edit		
Edit		•
Edit		
•		• • •

Real-World Examples

Universal high-speed RF Microwave test system

RFMTS Block Diagram

Logistical Goals


- Training for one system vs. many for operators, maintainers, and TPS developers.
- A modular architecture to facilitate: maintenance, fewer spares, and deal with obsolescence.
- A spares and maintenance program for one system
- A common resource that could be shared across many programs.
- An open architecture (H/W and S/W) that would permit upgrading / longevity.
- Reduced calibration equipment and procedures that employ automated / software based tools whenever possible to promote increased reliability and calibration integrity.
- System self test and diagnostic tools to support troubleshooting and maintenance.

Parameters

Power	Isolation	Frequency
Tone Power	Conversion Gain	Spurii
Pulse Power (RMS or Peak)	Group Delay	Harmonic
Total Power	Noise Figure	Nth Order Intercept
Spectral Power Density	Phase Noise	Modulation Index
Noise Power	RF Signal Source	Raw Read
Pout & Pin at "N" dB compression	Complex Volts	Complex FFT Data Block
AM/PM	Pulse Profile	Digital Data Verification
Multiport S-Parameters	Rise time	Analog DMM
12-Term Error Correction	Fall time	Scope Measurements
Gain	Droop	Frequency
Input/Output Return Loss	Envelop Delay	Spurii

Microwave Synthetic Measurement Instrument Functional Diagram

Control and Data Acquisition

- Thirteen Slot VXI Chassis
- VXI Slot Zero Controller (COTS)
- VXI Digital Receiver (COTS)
- VXI RF Controller
- VXI Static Digital Card (COTS)
- VXI DUT Control Module
- Eight Port Ethernet HUB

Peripherals

- Host Computer
- Laser Printer
- Barcode Reader

Un-interruptible Power Supply

RF Subsystem

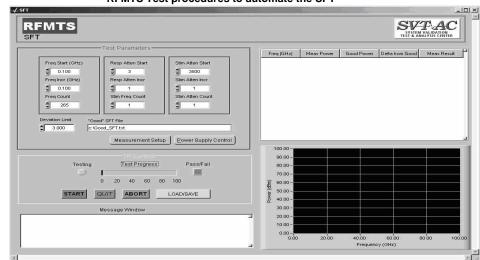
- Up-Converter & LO Distribution
- Down-Converter & LO Distribution
- System Local Oscillators
- 5 & 10 MHz Frequency Distribution Unit
- Optional Amplifier Bank
- RF Power Supply

Primary Calibrated Line Replaceable Units (LRU)

- Local Calibration Unit (LCU)
- GPIB Power Meter & Sensor (COTS)
- Noise Source (COTS)
- 3.5 mm Calibration Kit
- 3.5 mm plug/play THRU
- 10MHz Rubidium Standard

Maintenance console power calibration

	Power Calibration INT Target: NT WORKSTATION®192.168.30.78]			
UNIVERSITY	Print Screen Load config file Write config file			
UNIVERSITY OF GÄVLE	Source Serial Number: Source Config: Source Config: Not Available Script Name 'T'-VProdeth SoftwareWatual Instrument/Site Atteruator Ref Step:	Receiver Setial Number: [123 Scipt Name: [123 Scipt Name: [123 Number:	Switched Banks Serial Number: 123 Scipt Name: Charlon Software/Writial Instrument/Site Browse Bank to Calibrate LCU LNA Destination File:	
	2 Irc_dest.hd Browse Execute	2.000000 GHz Edit Send Remove Calibration I	C Retrieve Data Type: Which One: I Browse Browse Browse Execute	
			Close	


S-Parameter test procedure

🖌 Source Cal	
RFMTS Source Cal	SVEP AC System validation Test a analysis center
Source Primary	Message Window
Freq Start (GHz) Freq Incr (GHz) Freq Count	
SA Below Step SA Ref Step SA Num Steps	Testing Test Progress Pass/Fail
Ref Step Flag Ref Step Only All <u>Power Supply Control</u>	0 20 40 60 80 100 START QU//7 ABORT LOAD/SAVE

RFMTS Test procedures to automate the power calibration

RFMTS Digitizer Cal	SVP AC SYSTEM VALIDATION TEST & ANALYSIS CENTER	Message Window	
est Parameters	Freq Count	Testing TestProgress Pass/Fail	
	Power Supply Control	START QUIT ABORT LOAD/SAVE	

RFMTS Test procedures to automate the SFT

Maintenance console composite SFT GUI

Print Screen Load config file Write config file		
Source	Receiver	Switched Banks
Serial Number: Source Config: 123 Source Config: Not Available Script Name: Source Config: Browse	Serial Number: 123 Script Name: //Y-Prodetn/Software/Virtual Instrument/Src Browse	Serial Number: 123 Script Name: 17:YProdch/Software/Virtual Instrument/Src Browsel
Image: Product Software Production The Mathematic Software To Water Image: Product Software To Product Software To Product Software Image: Product Software To Product Software To Product Software Image: Product Software To Product Software To Product Software Image: Product Software To Product Software To Product Software Image: Product Software To Product Software To Product Software Image: Product Software To Product Software To Product Software	Attenuation Fel Step:	Bark to Calibrate LCU LNA Destination File: Destination File: Destination File: Browse
Execute	Execute Access Archive Calibra	Execute
	Add Color Freq Units Add Color Freq Units Edit Color Send Remove Calibration	C Retrieve Data Type: Which One:
	Downcom File to Send to Target 2 Use Default File	verter LNA Bank
		Execute
	ABURT	Close

TRM 1000C maintenance console

Suggestions

Emerging systems will demand support for-

- Standards
- Mass Memory Tests
- New Busses
- Expanded frequency ranges
- Parallel processing/functional test
- Multiple runtime/operating environments
- High speed, high resolution ADC/DAC technology
- High resolution Reference Units

Questions

Tack !