Accessing Embedded Instruments through the Life Cycle Using P1687

Farrokh Ghani Zadegan, Gunnar Carlsson, Erik Larsson

LUNDS UNIVERSITET Lunds Tekniska Högskola

Motivation

Life Cycle of a Chip

On-chip instruments used in:

- Chip-level:
 - Debugging
 - Characterization
 - Burn-in
 - Manufacturing test
- Board-level
 - Bring-up
 - Manufacturing test
- System-level
 - Monitoring & fault management
 - In-field test

Motivation

- An instrument might be used in several scenarios
- Example: A Memory Built-In-Self-Test might be used in
 - Characterization ⇒ choosing most suitable algorithms
 - Manufacturing test ⇒ detecting & repairing defective ICs
 - Burn-in ⇒ causing activity in the chip and detecting infant mortality
 - PCB debugging ⇒ taking a suspected memory error out of the equation
 - PCBA manufacturing test ⇒ detecting defective ICs
 - Power-on-self-test & in-field test ⇒ detecting defective ICs

Motivation

- How to access the instruments?
- IEEE P1687 standardizes the access through the JTAG TAP
 - On-chip instruments become accessible through the whole life cycle
- Many ways to build the on-chip instrument access infrastructure (network)
 - How to do it efficiently?
 - In this work we describe and compare six network design approaches w.r.t
 - Overall access time
 - Hardware overhead
 - Robustness toward new scenarios
- We believe the work is also applicable to IEEE 1149.1-2013

Outline

- Introduction & background
- Design approaches
- Experiments
- Conclusion

Overview of P1687

Overview of P1687

SIB: Segment Insertion Bit

Overview of P1687

SCB: ScanMux Control Bit

- Prior work on network design for P1687 [Zadegan et al, DATE'11]
 - SIB-based
 - One scenario
 - -sequential access (one instrument at a time)
 - –concurrent access (all instruments at the same time)
 - Overhead
 - -Not affected by length of shift-registers
 - -Affected by number of accesses and schedule

-Both vary by scenario

 Networks optimized for one scenario, not optimal for others

• In this work,

- we assume given is
 - A number of scenarios, each assigned a weight W_s by the designer
 - The number of accesses for each instrument per scenario $A_{i,s}$
 - For each scenario, sequential/concurrent access
- we compare six design approaches w.r.t.
 - Overall access time (OAT)
 - Hardware overhead
 - Robustness against new scenarios
- each design approaches is either
 - SIB-based, or
 - SCB-based (daisy-chained)

Outline

- Introduction & background
- Design approaches
- Experiments
- Conclusion

- We consider the following approaches:
 - A regular scan-chain
 - Flat network
 - -SIB-based
 - -SCB-based (daisy-chained)
 - Hierarchical network
 - -SIB-based
 - -SCB-based (daisy-chained)
 - Multiple networks
 - -SIB-based
 - -SCB-based (daisy-chained)

• A regular scan-chain

$$TDI \rightarrow A=5 \rightarrow A=3 \rightarrow A=10 \rightarrow TDO$$

- Assume three instruments with 5, 3, and 10 accesses
- Instruments always on the scan-path
 - Overhead: dummy-bits shifted for inactive instruments

• Flat network (SIB-based)

- Instruments included in the scan-path when needed
 - Time overhead: SIBs on the scan-path
 - Hardware overhead: SIBs
- Straightforward to design

• Flat network (daisy-chained)

- Instruments included in the scan-path when needed
 - Time and hardware overhead:
 - SCBs on the scan-path
 - Bypass registers
- Straightforward to design

• Hierarchical network (SIB-based)

- Instruments included in the scan-path when needed
 - Overhead: SIBs on the scan-path

• How to design the hierarchy for multiple scenarios?

Accesses for scenario 1: $A_{1,1}$, $A_{2,1}$, $A_{3,1}$ Accesses for scenario 2: $A_{1,2}$, $A_{2,2}$, $A_{3,2}$

- For each instrument $A_{i,total} = \sum_{s \in S} (A_{i,s} \times W_s)$
- Use methods in [Zadegan et al, DATE'11]

Hierarchical network (daisy-chained)

TDI SIB SCBs on the scan-path when needed SIB SCBs on the scan-path Bypass registers

Multiple networks

- One optimized network per scenario
- Two alternatives:
 - SIB-based
 - SCB-based (daisy-chained)

Outline

- Introduction & background
- Design approaches
- Experiments
- Conclusion

- Comparing design approaches:
 - Overall access time (OAT)
 - Weighted sum of the access time for each scenario
 - Hardware overhead
 - Robustness for new scenarios

Instruments and Access Scenarios

Instruments		Scenarios (weights)							
Туре	Count	S1(1) Seq.	S2(100) Con.	S3(1) Con.	S4(1) Seq.	S5(100) Con.	S6 Seq.	S7 Con.	
1	20	100	10	10	10	10	10	10	
2	20	10000	0	0	0	0	0	0	
3	10	100	10	10	10	10	10	10	
4	40	100000	10	10	100000	100	10	10	
5	10	10	100	10	10	10	100000	100000	

Overall Access Time (for known scenarios)

	We	Sum				
Approach	S1(1) Seq.	S2(100) Con.	S3(1) Con.	S4(1) Seq.	S5(100) Con.	(x10 ⁶)
Regular scan-chain	8427	20.3	0.02	8021	20.1	16489
Flat Network	525	4.7	0.02	500	10.1	1040
Flat daisy-chained	525	4.5	0.02	500	9.7	1040
Hierarchical network	152	4.1	0.02	143	9.7	309
Hierarchical daisy-chain	152	3.9	0.02	143	9.3	308
Multiple networks	151	3.8	0.02	143	9.5	307
Multiple daisy-chains	151	3.7	0.02	143	9.1	307

Hardware Overhead

Approach	Flip-flops	Muxes	Buffers
Regular scan-chain	0	0	0
Flat Network	200	100	0
Flat daisy-chained	302	101	0
Hierarchical network	286	143	0
Hierarchical daisy-chain	517	187	0
Multiple networks	1172	586	400
Multiple daisy-chains	1940	677	400

Overall Access Time (for new scenarios)

		S6 (seq.)	S7 (con.)		
Approach	OAT (x10 ⁶)	Potential improvement	OAT (x10 ⁶)	Potential improvement	
Regular scan-chain	2006	0%	2005	0%	
Flat Network	125	0%	31	0%	
Flat daisy-chained	125	0%	30	0%	
Hierarchical network	40	17.56%	23	3.84%	
Hierarchical daisy-chain	40	17.55%	23	4.00%	
Multiple networks	36	11.78%	22	0%	
Multiple daisy-chains	36	11.79%	21	0%	

Conclusion

- P1687 to access the on-chip instruments
- Instruments used in multiple scenarios
 - Different schedules
 - Different number of accesses
- Network optimized for one scenario, not optimal for others
- We compared six approaches, regarding
 - Overall access time
 - Hardware overhead
 - Robustness against new scenarios

Conclusion

Observations from the comparison

- Use of multiple networks results in the least OAT
 - at the cost of extra hardware
- Daisy-chains perform better for concurrent access
 - Slightly higher hardware overhead compared with their SIB-based counterparts
- A single hierarchical network resulted in low OAT
 - with a relatively low hardware overhead

Accessing Embedded Instruments through the Life Cycle Using P1687

Farrokh Ghani Zadegan, Gunnar Carlsson, Erik Larsson

LUNDS UNIVERSITET Lunds Tekniska Högskola